Прорыв в «понимании» беспилотными авто того, что они «видят»
Придумана новая темпоральная логика, имитирующая квази-восприятие
Мир становится все более парадоксален.
С одной стороны — беспилотные авто нами уже воспринимаются как данность ближайшего будущего.
С другой — вполне возможно, что этот класс технологий будет вообще запрещен для использования вне специальных дорог волевыми решениями политиков.
Мы не знаем, какой из названных вариантов будущего нас ждет. Но точно известно, в чем проблема.
✔️ Все современные алгоритмы вождения беспилотных авто не «понимают», что они «видят».
С проблемой, из-за которой мы берем в кавычки слово «видят», исследователи успешно справились. Алгоритмы ИИ-вождения «видят» совсем не так, как мы. Но хоть и по-своему, но «видят» даже лучше нас: точнее и быстрее.
К проблеме, из-за которой закавычивается слово «понимают», до самого последнего времени даже не знали, как подступиться. Да и как вложить понимание в алгоритм ИИ-вождения, если современный ИИ на основе машинного обучения, в принципе, не способен ничего понимать.
Однако, вся история человеческих открытий и инноваций показывает, что неразрешимых задач для нас нет. Нужно только желание их решить и время. Порой, весьма много времени.
Похоже, что подошло время таки решить проблему с пониманием алгоритмов ИИ-вождения. И хотя это совсем еще не тотальное понимание мира со стороны ИИ, для практических задач ИИ-вождения это вполне может решить проблему квази-понимания.
Новый метод, только что представленной на конференции DATE 2019 во Флоренции командой двух университетов США, основан на кардинально новом подходе к реализации компьютерного квази-восприятия.
✔️ Только путем прорыва от квази-видения к квази-восприятию, по мнению авторов (и с ними трудно не согласиться), можно попытаться построить компьютерное квази-понимание.
- Для реализации компьютерного квази-восприятия предложено использовать новый класс логики — Темпоральную логику хронометрической квалификации объектов реального мира — Timed Quality Temporal Logic (TQTL).
- На основе TQTL разработан формальной язык описания желаемых пространственно-временных свойств алгоритма восприятия, обрабатывающего видео.
- На этом формальном языке записываются «условия здравомыслия», удовлетворять которые обязан алгоритм интерпретации квази-восприятия.
Вот, собственно, и все.
В результате, такая система способна:
- распознавать фантомные объекты — это когда система воспринимает на видео объект, которого, на самом деле, нет (это нужно, чтобы не шарахнуться в объезд фантомного объекта, сбивая при этом идущую по краю тротуара старушку);
- правильно распознавать объекты, включая «здравый смысл» (например, если 0,1 секунды назад объект, распознанный велосипедистом, был, а теперь его нет, а спустя еще 0,1 секунды он появился снова на расстоянии 3 метра вправо, то это ошибка квази-восприятия, ибо не может велосипедист перемещаться по городской улице со скоростью 100 км/час.)
Новая система уже опробована, и показала хорошие результаты.
Сейчас она используется для выявления проблем с алгоритмом квази-восприятия в виртуальном тестировании, что делает алгоритмы ИИ-вождения более безопасными и надежными. Важно отметить, что поскольку этот метод основан на библиотеке «нормальных условий» («условий здравомыслия»), людям не нужно маркировать объекты в тестовом наборе данных — трудоемкий и часто ошибочный процесс.
В будущем команда надеется внедрить логику для переобучения алгоритмов квази-восприятия при обнаружении ошибки. Алгоритм также может быть расширен для использования в режиме реального времени во время движения автомобиля в качестве монитора безопасности.
Короче, не весть еще какое квази-восприятие, но жизнь многим старушкам и велосипедистам способно сохранить.
И есть, что делать дальше.
Подробней здесь.
________________________________
Если понравился пост:
- нажмите на “палец вверх”;
- подпишитесь на обновления канала на платформе Medium;
- оставьте комментарий.
Еще больше материалов на моем Телеграм канале «Малоизвестное интересное». Подпишитесь